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ABSTRACT
Abort-and-Restart model is used in Priority-based Functional Reac-

tive Programming in which higher priority tasks can preempt lower

priority tasks and the lower priority tasks are aborted and restarted

after the higher priority tasks have finished execution. This paper

discusses a potential of improving schedulability in P-FRP systems

by using preemption threshold that it allows a task to only disable

preemption of tasks up to a specified threshold priority. Also, a

sufficient schedulability test condition is studied in this paper for

P-FRP tasks using preemption threshold, which is a critical problem

to be solved in order to explore the potential benefit.

CCS CONCEPTS
• Software and its engineering→ Real-time schedulability;

KEYWORDS
functional reactive programming, real-time schuedling, fixed-Prioirty

scheduling, preemption threshold

1 INTRODUCTION
Complexity of software is growing at an exponential rate and it adds

a tremendous burden to software development in stages of analysis

and design. Introduced in 1997, Functional Reactive Programming

(FRP) [1] is a programming paradigm for reactive programming

(asynchronous data flow programming) that aims to simplify cogni-

tive overhead of the engineering of modern software. FRP combines

the power of functional and reactive programming and it has been

used to develop reactive systems such as robotics, gaming and

animation applications. Recently, in order to support the develop-

ment of real-time applications, Priority-based Functional Reactive

Programming (P-FRP) [2] has been introduced. P-FRP contains

properties inherited from FRP such as atomic execution, immutable

data structures and stateless processing, as well as supports prior-

ity assignment for executing real-time tasks. In a P-FRP system,

Abort-and-Restart (AR) model is used where higher priority tasks

can preempt lower priority tasks, and the lower priority tasks are

aborted and restarted after the higher priority tasks have completed

execution. In the aspect of real-time scheduling, the AR model is

significantly different from the classical preemptive model where

preempted, lower priority tasks can continue to execute fromwhere

they are preempted.

It has shown that traditional real-time scheduling methods are

not applicable to ensure the timely requirement of P-FRP tasks.

In [3–5], it has been proved that both Rate-Monotonic (RM) and

Deadline-Monotonic (DM) priority assignments are not optimal for
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general task-sets where RM assigns priorities based on tasks’ arrival

rate and DM assigns priorities based on tasks’ relative deadline. For

schedulability analysis, simulation-based methods are studied in [5–

7] by using the Least Common Multiple (LCM) of tasks’ periods to

generate a schedule of the tasks’ execution. Thus, the schedulability

can be determined. A major problem of the simulation methods is

that the LCM can be unacceptably large. In [8], Wong and Burns

show that finding an exact (sufficient and necessary) schedulibity

test is intractable , and thus a sufficient condition is developed

in their work. Since preemptions add additional execution time

to lower priority tasks and in some cases this additional cost is

significant to the tasks to meet their deadline, alternative models

are used to reduce the number of preemptions. Deferred Abort (DA)

technique is used in [9] to combine preemptive and non-preemptive

executions in order to improve schedulability. In the DA model, a

task is divided into two regions: the first region is AR and the second

region is non-preemptive and non-abortable. Once execution of

the task enters into the second region, preemption is not allowed

and thus unnecessary preemptions may be avoided. Zou et al. [10]

propose a non-work-conserving model, Deferred Start (DS), for

P-FRP systems to reduce the number of preemptions by postponing

the start of a job.

In the context of fixed-priority scheduling, Preemption Thresh-

old (PT) [11] has been discussed extensively to improve schedula-

bility. PT allows a task to only disable preemption of tasks up to

a specified threshold priority. Tasks having priorities higher than

the threshold are still allowed to preempt. This scheduling model

offers opportunities to improve schedulability of P-FRP tasks be-

cause preemptions can be disallowed in some cases to reduce the

overhead incurred by the AR model. Thus, some tasks’ response

time may be improved. Applying PT for P-FRP tasks consists of two

sub-problems. One is a schedulability test for a set of P-FRP tasks

with their priorities and preemption thresholds assigned. Another

is selections of those tasks’ priorities and preemption thresholds

to optimize the performance. In this short paper, we solve the first

sub-problem that is a required solution to solve the problem com-

pletely.

The rest of the paper is organized as follows. In Section 2, we

discuss the task model and show a motivative example for how

PT can be used to improve schedulability of P-FRP tasks. Section

3 presents a sufficient schedulability condition for the problem.

Future works are discussed in the last section.

2 TASK MODEL AND MOTIVATIVE EXAMPLE
In this section, we first define the task model used in this paper.

Then, we demonstrate a motivating example to show that using PT

may greatly reduce response time of a P-FRP task.



Table 1: Notations and Definitions

Notation Definition

τi Task i.

Pi The minimum time interval between any

two consecutive arrivals or period for τi .
Ci Worst-case execution time of τi .
Cij New used execution time of τj when

calculating τi ’s response time.

Di Relative deadline of τi . Di ≤ Pi
αi Priority used before τi ’s execution.
βi Priority used in τi ’s execution (PT).

Ri Worst-case response time of τi .
Bi Blocking time contributed to calculate Ri
hepi Higher or equal to the priority of τi .
hpi Higher than the priority of τi .
lpi Lower than the priority of τi .
PBi Preempted By τi (Tasks that τi can

preempt).

Table 2: A Set of 3 P-FRP Tasks with Preemption Threshold

Task P C D Priority PT

τ1 70 20 70 1 1

τ2 100 30 100 2 2

τ3 200 30 180 3 2

2.1 Task Model
Tasks considered in this paper are assumed to be sporadic such

that each task is an infinite sequence of instances where the task

is executed. Each task has a maximum arrival rate, defined by

a minimum time interval (period) between any two consecutive

arrivals of the instances. A task needs to complete its Worst-Case

Execution Time (WCET) by its deadline. We consider to use relative

deadline which means an instance of a task needs to be completed

within a time interval relative to the instance’s arrival time, or

otherwise a real-time violation occurs. Without loss of generality,

we assume that the period, execution time and relative deadline are

all integers, and the relative deadline is less than or equal to the

period. Each task has a priority assigned used for competing for

CPU before it executes, and another priority used for PT. We use an

integer of 1 to denote the highest priority of a task and we assume

that a larger integer indicates a lower priority. Preemptions are

allowed but managed by the two priorities for each task and it does

not allow self-preemption to happen. The AR model is used by the

lower priority tasks after each time they are preempted. Notations

and the detailed definitions used in this work are defined in Table

1.

2.2 A Motivative Example
We consider to use the following example to demonstrate the po-

tential of using PT to improve schedulability. There is a task set of

three tasks as shown in Table 2. In these tasks, neither τ1 nor τ2

has a raised priority during their execution while the priority of τ3
in its execution is increased to 2. In other words, after τ3 starts to
execute, only τ1 can preempt it and τ2 cannot do the same. Figure

1 shows a schedule of these three tasks without PT where τ3 is

preempted three times and each time it is aborted and restarted. As

a result, τ3 misses its deadline at time instant 180. Figure 2 shows

another schedule that τ3 can only be preempted by τ1. Due to the

reduced number of preemptions on τ3, τ3 completes its execution

much earlier than that in the previous schedule. It is worth to note

that in this schedule τ3 delays the execution of the second instance

of τ2 although the instance completes execution by its deadline too.

From the example, it can be seen that by raising a task’s priority

during execution, the task’s response time may be significantly

reduced by a reduction on preemptions. On the other side, when

it disallows preemptions on the task up to some threshold, it may

postpone some other tasks’ execution that may impacts the tasks

to complete by their deadlines. Therefore, a careful selection of

tasks’ PT may make a set of P-FRP tasks from unschedulable to

schedulable in a schedulability test. In the next section, we study a

schedulability problem of a set of P-FRP real-time tasks with PT.

Figure 1: A Schedule without Preemption Threshold

Figure 2: A Schedule with Preemption Threshold
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Table 3: A Set of 4 P-FRP Tasks with NewWCET C4

j

Task Pi Cj C4

j Priority

τ1 15 2 7(2+5) 1

τ2 25 3 8(3+5) 2

τ3 45 4 9(4+5) 3

τ4 100 5 5(5+0) 4

3 SCHEDULABILITY ANALYSIS WITH
PREEMPTION THRESHOLD

Given a set of P-FRP tasks with PT, we perform the schedulability

analysis by using the worst-case response time analysis of each

task. If each task’s worst-case response time is not larger than

its relative deadline, all tasks are schedulable. The response time

analysis used in this paper is an extension of the well-known time-

demand analysis [12–15] in which the response time is calculated

iteratively by adding new arrivals of tasks, starting from a critical

instant. A critical instant is defined as a time instant when a task is

ready together with all other tasks, the calculated response time of

this task is the largest in all cases. In this section, we first introduce a

method that is a sufficient condition for the schedulability problem

of P-FRP tasks. Then, we extend this method with using PT.

3.1 A Sufficient Schedulability Test
The work in [8] has shown that finding the critical instant in an

exact analysis is intractable. A difference between calculating a P-

FRP task’s response time and a general sporadic task’s response time

is the abort cost (the extra re-execution time of the task due to the

AR model). This cost is the key to cause that all tasks starting at the

same time is not a critical instant and the worst-case response time

is not always associated with the first instance of a P-FRP task. To

simplify the solution of the problem, an approach is proposed in [8]

that a theoretically maximum abort cost is included in the execution

time of all higher priority tasks of a task. Thus, the general iterative

method using a critical instant to calculate a task’s response time

can be applied. Since the abort cost considered in that approach is

only a theoretical upper-bound, the schedulability condition is only

sufficient, not exact. We briefly introduce the approach as follows.

Let Cij be a new execution time of τj including abort cost when

calculating the response time of τi . The following equation is used

to calculate Cij .

Cij = Cj + max∀k ∈hepi∩lpj
Ck (1)

Then, the worst-case response time of τi , Ri , can be calculated

as:

Ri = Ci +
∑

∀j ∈hpi
⌈
Ri
Pj

⌉ ×Cij (2)

If Ri is not larger than Di for every τi , the task set is schedulable.
We show an example for how to use the approach. Table 3 shows

the new execution times for all of the higher priority tasks than

τ4. These new WCETs are used to calculate R4. In this example

R4 > 100 and hence τ4 is not schedulable.

Table 4: A Set of 4 P-FRP Tasks with NewWCET of CPT4
j

Task Pi Cj CPT4
j Priority PT

T1 15 2 7(2+5) 1 1

T2 25 3 7(3+4) 2 2

T3 45 4 4(4+0) 3 3

T4 100 5 5(5+0) 4 2

We define another new execution time used in our later analysis.

Let CPTi
j be the new execution time of τj , when PT is used, to

calculate τi ’s response time.

CPTi
j = Cj + max∀k ∈hepi∩PBj

Ck (3)

CLAIM 1.With using PT, replacing Cij in (2) with CPTi
j is tighter

for the new execution time of τj .

Proof. The claim is true from an observation that between τj
and τi , only if τj ’s priority is higher than τi ’s PT (τi ∈ PBj ), τj can
preempt τi and cause it to be aborted. Otherwise, τj does not abort
τi . Thus, when calculating a new execution time of τj , if τj does not
abort τi , it does not need to consider τi ’s abort cost. Since for some

τj s the equation (3) does not consider the WECT of some tasks that

are considered by equation (1), CPTi
j ≤ Cij . �

Table 4 shows the new computed CPTi
j for the same task set in

Table 3 where τ4 has a PT of 2. Because both τ2 and τ3 cannot abort

τ4, τ4’s WECT is not used to calculate their new WCETs CPTi
j .

3.2 A Sufficient Test with Preemption
Threshold

The previous motivative example shows that a higher priority task

can be blocked by a lower priority task’s PT for execution until

the lower one completes its execution. When computing a task’s

response time, this blocking time has to be included in addition to

the influence from the higher priority tasks. The following claim is

useful to determine the length of the blocking time to a task.

CLAIM 2. An instance of a higher priority task τi in its execution
can be blocked by at most one instance of a lower priority task τj due
to preemption threshold, and this lower priority instance can block
the higher one only once.

Proof. If τi is blocked by τj , βj >= αi . It has been proved in

[11] that a higher priority task τi can be blocked by at most one

lower priority task τj due to preemption threshold. When τj is in
its execution of blocking τi , it either continues to complete the

execution or is preempted by another higher priority task. In the

latter case, τj is aborted and its priority goes back to α j . Since τj is
a lower priority task to τi , α j < αi . τi will execute before τj after
τj is aborted. �

The claim ensures that it does not need to consider the abort

cost o a lower priority task when determining the blocking time

due to this task’s PT. Hence, the worst-case of the blocking time

when calculating a task τi ’s response time is as follows.

3



Bi = max∀k ∈lpi∩<PBi
Ck − 1 (4)

In the equation (4), the blocking time of τi is the maximum

execution time minus 1 of the tasks that have a lower priority and

τi cannot preempt when they are executing. After the blocking

time is determined, we can extend the equation (2) to compute the

worst-case response time of τi . The following equation includes

the blocking time as defined in equation (4) and CPTi
j as defined in

(3) to calculate the response time of a task.

Ri = Bi +Ci +
∑

∀j ∈hpi
⌈
Ri
Pj

⌉ ×CPTi
j (5)

3.3 An Example for Calculating Ri with PT
We use the same task set in Table 4 for an example to show the

uses of equation (3), (4) and (5) to calculate response times of a set

of P-FRP tasks. The same priority assignment and same PT of τ4
are used. Table 5 shows the calculated new WECTs of the tasks

when computing the response times of τ2, τ3 and τ4. We use these

new calculated WCETs to obtain R2, R3 and R4. The computation

steps are shown as below. Please note that because τ1 is the highest
priority task and no task can preempt it or block it, R1 = 2 and

we skip its calculation below. Also, because both τ2 and τ3 can be

blocked by τ4, B2 = B3 = 4.

For τ4:
R4 = 5 + ⌈ 5

15
⌉ × 7 + ⌈ 5

25
⌉ × 7 + ⌈ 5

45
⌉ × 4 = 23

R4 = 5 + ⌈ 23
15
⌉ × 7 + ⌈ 23

25
⌉ × 7 + ⌈ 23

45
⌉ × 4 = 30

R4 = 5 + ⌈ 30
15
⌉ × 7 + ⌈ 30

25
⌉ × 7 + ⌈ 30

45
⌉ × 4 = 37

R4 = 5 + ⌈ 37
15
⌉ × 7 + ⌈ 37

25
⌉ × 7 + ⌈ 37

45
⌉ × 4 = 44

R4 = 5 + ⌈ 44
15
⌉ × 7 + ⌈ 44

25
⌉ × 7 + ⌈ 44

45
⌉ × 4 = 44

For τ3:
R3 = 4 + 4 + ⌈ 8

15
⌉ × 6 + ⌈ 8

25
⌉ × 7 = 21

R3 = 4 + 4 + ⌈ 21
15
⌉ × 6 + ⌈ 21

25
⌉ × 7 = 27

R3 = 4 + 4 + ⌈ 27
15
⌉ × 6 + ⌈ 27

25
⌉ × 7 = 34

R3 = 4 + 4 + ⌈ 34
15
⌉ × 6 + ⌈ 34

25
⌉ × 7 = 40

R3 = 4 + 4 + ⌈ 40
15
⌉ × 6 + ⌈ 40

25
⌉ × 7 = 40

For τ2:
R2 = 4 + 3 + ⌈ 7

15
⌉ × 5 = 12

R2 = 4 + 3 + ⌈ 12
15
⌉ × 5 = 12

Table 6 shows a comparison of the response time of each task

without and with using PT. It can be seen that after using PT, R4
is improved greatly because of the reduction of preemptions. On

the other side, R2 and R3 are increased slightly due to the blocking

of the raised priority of R4 during execution. If we assume Di = Pi
for each τi , the task set is determined to be schedulable in the

schedulability test.

4 DISCUSSION AND FUTUREWORKS
This work has demonstrated the opportunities of using PT to im-

prove schedulability of P-FRP real-time tasks. In order to explore

the opportunities, the schedulability test problem must be solved.

Table 5: Calculated CPT2
j , CPT3

j and CPT4
j

Task Cj CPT4
j CPT3

j CPT2
j

τ1 2 7(2+5) 6(2+4) 5(2+3)

τ2 3 7(3+4) 7(3+4) 3(3+0)

τ3 4 4(4+0) 4(4+0)

τ4 5 5(5+0)

Table 6: Comparison of Ri without And with Using PT

Task Without PT with PT

R1 2 2

R2 8 12

R3 23 40

R4 > 100 44

The equation (5), extended from the work in [11], is a sufficient

condition to the problem. The equation is used iteratively and con-

servatively to calculate the worst-case response time of each task.

It assumes that when every task starts to run, it aborts a lower

priority task with the longest execution time just before the task

completes, creating the worst-case scenario. Currently, this is the

only sufficient method to solve the schedulability problem. The

exact method is still unknown except of the one using simulations

for which in some cases it is not practical. It is easy to see that it is

not very likely for the worst-case scenario to happen. Therefore,

defining a tighter analysis is still a challenge.

As we mentioned earlier, using PT to improve schedulability of

P-FRP tasks consists of two sub-problems. We solve the first one of

the schedulability problem. The second one is how to select tasks

to have PT and what thresholds of preemption are used for the

selected tasks. From the example in Table 4, it can be seen that

τ4’s PT can be set to 3, 2 and even 1. Similarly, it can also set a

PT for τ2 or τ3. Each different setting can make a difference to the

calculated response times of the tasks. This problem needs to be

solved effectively and efficiently to optimize the overall response

times. We will solve this problem in a long version of this paper.
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